Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33531364

RESUMO

Voltage sensing with genetically expressed optical probes is highly desirable for large-scale recordings of neuronal activity and detection of localized voltage signals in single neurons. Most genetically encodable voltage indicators (GEVI) have drawbacks including slow response, low fluorescence, or excessive bleaching. Here we present a dark quencher GEVI approach (dqGEVI) using a Förster resonance energy transfer pair between a fluorophore glycosylphosphatidylinositol-enhanced green fluorescent protein (GPI-eGFP) on the outer surface of the neuronal membrane and an azo-benzene dye quencher (D3) that rapidly moves in the membrane driven by voltage. In contrast to previous probes, the sensor has a single photon bleaching time constant of ∼40 min, has a high temporal resolution and fidelity for detecting action potential firing at 100 Hz, resolves membrane de- and hyperpolarizations of a few millivolts, and has negligible effects on passive membrane properties or synaptic events. The dqGEVI approach should be a valuable tool for optical recordings of subcellular or population membrane potential changes in nerve cells.


Assuntos
Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Potenciais de Ação/genética , Animais , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Células HEK293 , Humanos , Potenciais da Membrana/genética
2.
Epilepsia ; 62(2): 542-556, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33452820

RESUMO

OBJECTIVE: Many antiseizure drugs (ASDs) act on voltage-dependent sodium channels, and the molecular basis of these effects is well established. In contrast, how ASDs act on the level of neuronal networks is much less understood. METHODS: In the present study, we determined the effects of eslicarbazepine (S-Lic) on different types of inhibitory neurons, as well as inhibitory motifs. Experiments were performed in hippocampal slices from both sham-control and chronically epileptic pilocarpine-treated rats. RESULTS: We found that S-Lic causes an unexpected reduction of feed-forward inhibition in the CA1 region at high concentrations (300 µM), but not at lower concentrations (100 µM). Concurrently, 300 but not 100 µM S-Lic significantly reduced maximal firing rates in putative feed-forward interneurons located in the CA1 stratum radiatum of sham-control and epileptic animals. In contrast, feedback inhibition was not inhibited by S-Lic. Instead, application of S-Lic, in contrast to previous data for other drugs like carbamazepine (CBZ), resulted in a lasting potentiation of feedback inhibitory post-synaptic currents (IPSCs) only in epileptic and not in sham-control animals, which persisted after washout of S-Lic. We hypothesized that this plasticity of inhibition might rely on anti-Hebbian potentiation of excitatory feedback inputs onto oriens-lacunosum moleculare (OLM) interneurons, which is dependent on Ca2+ -permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Indeed, we show that blocking Ca2+ -permeable AMPA receptors completely prevents upmodulation of feedback inhibition. SIGNIFICANCE: These results suggest that S-Lic affects inhibitory circuits in the CA1 hippocampal region in unexpected ways. In addition, ASD actions may not be sufficiently explained by acute effects on their target channels, rather, it may be necessary to take plasticity of inhibitory circuits into account.


Assuntos
Anticonvulsivantes/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Dibenzazepinas/farmacologia , Epilepsia/fisiopatologia , Interneurônios/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Epilepsia/induzido quimicamente , Retroalimentação Fisiológica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Interneurônios/metabolismo , Potenciação de Longa Duração , Agonistas Muscarínicos/toxicidade , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pilocarpina/toxicidade , Ratos , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo
3.
J Neurosci ; 39(45): 8998-9012, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31519822

RESUMO

Inhibitory interneurons, organized into canonical feedforward and feedback motifs, play a key role in controlling normal and pathological neuronal activity. We demonstrate prominent quantitative changes in the dynamics of feedback inhibition in a rat model of chronic epilepsy (male Wistar rats). Systematic interneuron recordings revealed a large decrease in intrinsic excitability of basket cells and oriens-lacunosum moleculare interneurons in epileptic animals. Additionally, the temporal dynamics of interneuron recruitment by recurrent feedback excitation were strongly altered, resulting in a profound loss of initial feedback inhibition during synchronous CA1 pyramidal activity. Biophysically constrained models of the complete feedback circuit motifs of normal and epileptic animals revealed that, as a consequence of altered feedback inhibition, burst activity arising in CA3 is more strongly converted to a CA1 output. This suggests that altered dynamics of feedback inhibition promote the transmission of epileptiform bursts to hippocampal projection areas.SIGNIFICANCE STATEMENT We quantitatively characterized changes of the CA1 feedback inhibitory circuit in a model of chronic temporal lobe epilepsy. This study shows, for the first time, that dynamic recruitment of inhibition in feedback circuits is altered and establishes the cellular mechanisms for this change. Computational modeling revealed that the observed changes are likely to systematically alter CA1 input-output properties leading to (1) increased seizure propagation through CA1 and (2) altered computation of synchronous CA3 input.


Assuntos
Epilepsia/fisiopatologia , Retroalimentação Fisiológica , Modelos Neurológicos , Inibição Neural , Potenciais de Ação , Animais , Região CA1 Hipocampal/fisiopatologia , Interneurônios/fisiologia , Masculino , Células Piramidais/fisiologia , Ratos , Ratos Wistar
4.
Neuron ; 90(4): 853-65, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27161528

RESUMO

The neurotransmitter acetylcholine, derived from the medial septum/diagonal band of Broca complex, has been accorded an important role in hippocampal learning and memory processes. However, the precise mechanisms whereby acetylcholine released from septohippocampal cholinergic neurons acts to modulate hippocampal microcircuits remain unknown. Here, we show that acetylcholine release from cholinergic septohippocampal projections causes a long-lasting GABAergic inhibition of hippocampal dentate granule cells in vivo and in vitro. This inhibition is caused by cholinergic activation of hilar astrocytes, which provide glutamatergic excitation of hilar inhibitory interneurons. These results demonstrate that acetylcholine release can cause slow inhibition of principal neuronal activity via astrocyte intermediaries.


Assuntos
Astrócitos/efeitos dos fármacos , Colinérgicos/farmacologia , Hipocampo/citologia , Vias Neurais/fisiologia , Septo do Cérebro/efeitos dos fármacos , Animais , Astrócitos/fisiologia , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Aprendizagem/fisiologia , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Septo do Cérebro/citologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
5.
Nat Neurosci ; 18(6): 872-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25961790

RESUMO

Midbrain ventral tegmental neurons project to the prefrontal cortex and modulate cognitive functions. Using viral tracing, optogenetics and electrophysiology, we found that mesocortical neurons in the mouse ventrotegmental area provide fast glutamatergic excitation of GABAergic interneurons in the prefrontal cortex and inhibit prefrontal cortical pyramidal neurons in a robust and reliable manner. These mesocortical neurons were derived from a subset of dopaminergic progenitors, which were dependent on prolonged Sonic Hedgehog signaling for their induction. Loss of these progenitors resulted in the loss of the mesocortical inhibitory circuit and an increase in perseverative behavior, whereas mesolimbic and mesostriatal dopaminergic projections, as well as impulsivity and attentional function, were largely spared. Thus, we identified a previously uncharacterized mesocortical circuit contributing to perseverative behaviors and found that the diversity of dopaminergic neurons begins to be established during their progenitor phase.


Assuntos
Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/fisiologia , Área Tegmentar Ventral/crescimento & desenvolvimento , Área Tegmentar Ventral/fisiologia , Animais , Atenção/fisiologia , Comportamento Animal/fisiologia , Cognição/fisiologia , Condicionamento Operante/fisiologia , Neurônios Dopaminérgicos/fisiologia , Glutamatos/fisiologia , Interneurônios/fisiologia , Camundongos , Optogenética , Córtex Pré-Frontal/citologia , Células Piramidais/fisiologia , Recompensa , Área Tegmentar Ventral/citologia , Ácido gama-Aminobutírico/fisiologia
6.
J Neurosci ; 34(29): 9720-35, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25031410

RESUMO

The mechanisms of action of many CNS drugs have been studied extensively on the level of their target proteins, but the effects of these compounds on the level of complex CNS networks that are composed of different types of excitatory and inhibitory neurons are not well understood. Many currently used anticonvulsant drugs are known to exert potent use-dependent blocking effects on voltage-gated Na(+) channels, which are thought to underlie the inhibition of pathological high-frequency firing. However, some GABAergic inhibitory neurons are capable of firing at very high rates, suggesting that these anticonvulsants should cause impaired GABAergic inhibition. We have, therefore, studied the effects of anticonvulsant drugs acting via use-dependent block of voltage-gated Na(+) channels on GABAergic inhibitory micronetworks in the rodent hippocampus. We find that firing of pyramidal neurons is reliably inhibited in a use-dependent manner by the prototypical Na(+) channel blocker carbamazepine. In contrast, a combination of intrinsic and synaptic properties renders synaptically driven firing of interneurons essentially insensitive to this anticonvulsant. In addition, a combination of voltage imaging and electrophysiological experiments reveal that GABAergic feedforward and feedback inhibition is unaffected by carbamazepine and additional commonly used Na(+) channel-acting anticonvulsants, both in control and epileptic animals. Moreover, inhibition in control and epileptic rats recruited by in vivo activity patterns was similarly unaffected. These results suggest that sparing of inhibition is an important principle underlying the powerful reduction of CNS excitability exerted by anticonvulsant drugs.


Assuntos
Anticonvulsivantes/farmacologia , Carbamazepina/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Canais de Sódio/metabolismo , Animais , Anticonvulsivantes/uso terapêutico , Biofísica , Convulsivantes/toxicidade , Modelos Animais de Doenças , Estimulação Elétrica , Epilepsia/induzido quimicamente , Epilepsia/patologia , Hipocampo/citologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Ácido Caínico/toxicidade , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Pilocarpina/toxicidade , Ratos , Ratos Wistar
7.
J Neurosci ; 33(32): 13066-80, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926260

RESUMO

The modulation of synaptic plasticity by NMDA receptor (NMDAR)-mediated processes is essential for many forms of learning and memory. Activation of NMDARs by glutamate requires the binding of a coagonist to a regulatory site of the receptor. In many forebrain regions, this coagonist is d-serine. Here, we show that experimental epilepsy in rats is associated with a reduction in the CNS levels of d-serine, which leads to a desaturation of the coagonist binding site of synaptic and extrasynaptic NMDARs. In addition, the subunit composition of synaptic NMDARs changes in chronic epilepsy. The desaturation of NMDARs causes a deficit in hippocampal long-term potentiation, which can be rescued with exogenously supplied d-serine. Importantly, exogenous d-serine improves spatial learning in epileptic animals. These results strongly suggest that d-serine deficiency is important in the amnestic symptoms of temporal lobe epilepsy. Our results point to a possible clinical utility of d-serine to alleviate these disease manifestations.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/patologia , Epilepsia do Lobo Temporal/patologia , Agonistas de Aminoácidos Excitatórios/uso terapêutico , Hipocampo/metabolismo , Serina/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Sítios de Ligação/efeitos dos fármacos , Transtornos Cognitivos/etiologia , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/dietoterapia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Agonistas Muscarínicos/toxicidade , Pilocarpina/toxicidade , Ligação Proteica/efeitos dos fármacos , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Escopolamina/toxicidade , Serina/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-21960281

RESUMO

Paddlefish are uniquely adapted for the detection of their prey, small water fleas, by primarily using their passive electrosensory system. In a recent anatomical study, we found two populations of secondary neurons in the electrosensory hind brain area (dorsal octavolateral nucleus, DON). Cells in the anterior DON project to the contralateral tectum, whereas cells in the posterior DON project bilaterally to the torus semicircularis and lateral mesencephalic nucleus. In this study, we investigated the properties of both populations and found that they form two physiologically different populations. Cells in the posterior DON are about one order of magnitude more sensitive and respond better to stimuli with lower frequency content than anterior cells. The posterior cells are, therefore, better suited to detect distant prey represented by low-amplitude signals at the receptors, along with a lower frequency spectrum, whereas cells in the anterior DON may only be able to sense nearby prey. This suggests the existence of two distinct channels for electrosensory information processing: one for proximal signals via the anterior DON and one for distant stimuli via the posterior DON with the sensory input fed into the appropriate ascending channels based on the relative sensitivity of both cell populations.


Assuntos
Potenciais de Ação/fisiologia , Peixes/fisiologia , Rombencéfalo/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Estimulação Elétrica/métodos
9.
Brain Res ; 1265: 93-102, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19230828

RESUMO

The paddlefish is a passive electrosensory ray-finned fish with a special rostral appendage that is covered with thousands of electroreceptors, which makes the fish extremely sensitive to electric fields produced by its primary prey, small water fleas. We reexamined the electrosensory pathways from the periphery to the midbrain by injecting the neuronal tracer BDA into different branches of the lateral line nerve and into different parts of the dorsal octavolateral nucleus (DON) and the tectum. Primary afferents from the anterior to posterior body axis terminate in different areas in the mediolateral axis of the DON, the first electrosensory processing station. Previous studies showed that DON neurons project to the tectum and two different areas in the tegmentum. Now, we have found differences between the anterior and the posterior DON. Fibers from the anterior DON project unilaterally to the contralateral tectum while its posterior neurons project bilaterally to two nuclei in the tegmentum, the torus semicircularis and the lateral mesencephalic nucleus. This study is the first to show that two different populations of ascending neurons project to two different targets in the midbrain. These two pathways are likely to have different functions and further investigations may reveal the functional significance of these two parallel ascending systems.


Assuntos
Vias Aferentes/anatomia & histologia , Peixes , Mesencéfalo/anatomia & histologia , Teto do Mesencéfalo/anatomia & histologia , Vias Aferentes/química , Animais , Biotina/administração & dosagem , Biotina/análogos & derivados , Biotina/química , Dextranos/administração & dosagem , Dextranos/química , Peixes/anatomia & histologia , Mesencéfalo/química , Microinjeções , Neurônios/química , Teto do Mesencéfalo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...